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This paper is a self-contained sequal to Miller (1970), entitled ‘Periodic forests of
stunted trees’. It is concerned with ¢ Copses’ and  Tessellations’ based on an infinite
background of nodes at the vertices of a plane tessellation of unit equilateral triangles,
forming either a finite larger equilateral triangle for a copse, or an infinite doubly
periodic tessellation otherwise. In any such background the unit triangles form two
sets, of opposing orientations. We label the nodes individually with a 1 (called Zive
nodes) or a 0 (called vacant nodes) in such a way that for the nodes on each triangle of one
set with the same orientation the sum of the labels equals 0 (mod 2); the sum round unit
triangles of the other orientation is not restricted. The tessellations are obtained by
joining by an edge every pair of adjacent live nodes.

The purpose of the paper is to study which copses and tessellations exist, and to
enumerate them, and to show how they may be constructed and listed. In Miller (1970)
this was done for forests, slightly different from tessellations but with an identical
theoretical approach. In the present paper we are particularly interested in copses and
tessellations with rotational symmetry about each of a lattice of symmetry centres,
either with or without reflexive symmetry as well.

A copse is determined by a particular vector of node labels along one of its edges: the
symmetry studied in the present paper corresponds to having identical vectors along
all three edges of the copse. We find a basis for ‘permissible vectors’ yielding such
symmetry for each size of copse. A tessellation is determined by an infinite vector of
labels — periodic in this investigation —along a straight line of adjacent nodes. This in
turn is generated as a series of coefficients by a ‘generating fraction’ of which the
denominator is a ¢ generating polynomial’ of finite degree depending on the period.

The vector defining a copse of size £ + 1, and the minimum polynomial of degree £,
generating a tessellation of period n (which will be such that z|2%—1) turn out to be
eigen-vectors (respectively row- and column-vectors) of the same Pascal matrix (con-
sisting of a triangle of binomial coefficients, modulo 2, together with a right bottom half
all zeros). These are fully studied.

Finally it is known that the product of a// irreducible polynomials with coefficients in
GF(2) and of degree dividing £ is just #2* +¢. It is shown in this paper that, in a similar
fashion, all (suitably-defined) ‘primary’ reflexive polynomials of degree dividing 2%,
themselves divide £2+1 41, and that all ¢ primary’ rotational polynomials of degree divid-
ing 3% in a similar way divide either 2+ + 2" 4+ 1 or 214 £+ 1. It is also established
that the ‘primary’ polynomials of each type, i.e. all, reflexive, rotational and triangular
(both rotational and reflexive) each have the same enumerating function for the res-
pective degrees £, 2k, 3k, and 6k. We also find that there is only one irreducible trian-
gular polynomial, namely £+ ¢+ 1.

The various types of copses and polynomials have been enumerated for a number of
values of £ or n, and likewise rotational and triangular tessellations for those values of n
for which they exist. A substantial selection of these tables is given in the paper. A very
large number of diagrams have been drawn, and a substantial, and I hope representa-
tive, selection reproduced herein.
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ON ROTATIONAL TESSELLATIONS AND COPSES 601

1. INTRODUCGTION

In Miller (1970) I have given definitions, mathematical properties, and enumerations of Periodic
Jorests of stunted trees and of related tessellations consisting of equilateral triangles and alternate-
sided hexagons. In this paper I am interested primarily in such periodic tessellations having
triangular symmetry, that is the rotational symmetry of an equilateral triangle. It turns out that
this study needs a full investigation of copses. based on backgrounds of finite equilateral triangles
of nodes, both with and without triangular symmetry; this is therefore included.

In order that the present paper may be reasonably self-contained, I give first in §2 a condensed
summary of the definitions and main general properties of these periodic tessellations, leaving the
reader to refer to the earlier papers, listed in the reference section, for further information and
proofs.

In §3 I consider the symmetry and enumeration of copses, and in § 4 there is a discussion of the
Pascal matrix, and its eigensystem, with, in §5, properties and enumeration of the polynomials
and sequences formed from its row- and column-eigenvectors.

In §6 I discuss the symmetry of tessellations, and in § 7 the construction and in § 8, the enumera-
tion of rotational tessellations from the rotational copses contained within them.

2. DEFINITIONS AND PRINCIPAL PROPERTIES
2.1. The background of nodes and its generation

We consider a background of nodes forming a plane equilateral triangular lattice. We choose any
node as origin of coordinates, and two axes, of r and of's, through the origin along lines of nodes at
minimum (unit) spacing, and at 60° to one another. The nodes then have integer coordinates
[r,5]; if we need Cartesian coordinates, we will take the r-axis as x-axis, and the y-axis perpen-
dicular to it in the direction of increasing s—this gives coordinates (7 + s, §4/3s) for the node at
[r,5].

We now tag the nodes with a 1 (called live nodes), or a 0 (called vacant nodes) — the value at
[7,s] is denoted by w, ,— given by the coeflicient of #" in the formal generating function

Gy(t) = S, 4. (2.11)
0

The backgrounds we consider will always arise from a generating fraction ¥ (t)/f*(t), where
@¥(t) and f*(f) are polynomials with coefficients in GF(2), with degpX(t) < deg f*(¢). The
sequence tags can then be read from G(f), obtained from the generating fraction by division.

Conversely, if G,(¢) has period n—we note that any polynomial f(t) generatest periodic
sequences only — we can write

G,(t) = (nil wr,st’) (Lt g2m..)
0

— () /(1 + ) (2.12)

=i (O)/[f*()

T We write f*(t) = cptep_qt+...4cot? f(t) = cpt¥+cp_y t¥1+ ...4¢, for reciprocal polynomials, with
coefficients in the same order, frequently detached so that we have a ‘number’ ¢;, ¢, _y...c, for either. It is usual to say
that f(¢) generates the sequences, rather than f*(t), but we have more use for f*(t) in this paper and shall regard
either as the generator. If we write coefficients in reverse order we shall use f/(¢) and f"*(t). Thus f*(¢) is another
version of f*(¢). Coonsistency is not often important, and may not always have been achieved.

48-2


http://rsta.royalsocietypublishing.org/

JA

o \

p &

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

’_l‘::
>~
O H
~ =
k= O
= O
= uw

OF

OF

Downloaded from rsta.royalsocietypublishing.org

602 J. C. P. MILLER

so that the generating function can be recovered. We call the line s = 0 the ground, or the root- or
base-line; it contains the line of roots or live nodes given by g (f) /f *(¢), a fraction in its lowest
terms (and, as we shall see, normally such that (1+1£) 4 f*(f)). We obtain subsequent lines by
use of the rule

1) = (10 90 mod/ () .13
or B () = (1+1)%p¢(t) mod £ *(2). '
It will readily be verified that, within the sector r > 0, s > 0, we have everywhere
Wy, 541 = Wy, s Wyiy,s } (2.14)
or Wy st Wyyg, s+ Wy 541 = 0.

This is the fundamental rule for the formation of permissible backgrounds for our purposes.

Since every fraction ¢g (¢) /f *(¢) with deg ¢* < deg f* generates a purely periodic sequence of
minimum period 7, say, in the ground row, and consequently in subsequent rows (provided
(1+1¢){f*(t)), we can extend the background, by use of the n-periodicity, to all negative r. We
can also extend similarly to all negative s, for we must also have a row-period, m, since the
number of possible sequences of period 7 is finite. However, periodicity need not necessarily
start with a repeat of the root-line; a criterion for pure periodicity is that ((1 +¢) eg(¢), £ *(¢)) = 1.
When this is so we can say that f*(¢) [or f(¢)] is the minimum polynomial generating this purely
pertodic background, complete for all 7, s.

2.2. Forests, copses, lessellations and nets

The rule (2.14) means that for a C-triangle, i.e. a unit triangle of the background with base
vertices [7, s] and [ + 1, 5], and third vertex [, s + 1], has 0 (mod 2) live nodes as vertices, whereas
a B-iriangle, with the opposite orientation (i.e. third vertex [r+ 1, s—1]) may have any number
0, 1, 2 or 3 of live nodes.

Thus alive node at level s + 1, at a vertex of a C-triangle has just one corresponding live node on
the base of this triangle; we may join these two vertices by a unit line not parallel to the ground.
If this is done throughout the background, for all r and for all s (or for all s > 0), that is, if all
pairs of adjacent live nodes at different s-levels are joined, the result is a periodic forest of stunted
trees (see Miller 1970). If all adjacent pairs of live nodes are connected we get a tessellation; in each
case the result is doubly periodic with periods z and m.

We need also to study backgrounds defined by a finite sequence of 7 consecutive nodes along the
ground; this will result in a triangle of tagged nodes. If joined as trees it will be called a copse, if
as a tessellation it will be called a net.

The rule (2.14) has triangular symmetry so we could equally well choose the axis of s as ground,
or the axis of ¢ = —r—s. We can thus obtain three distinct forests from a single background,
though only one tessellation. Likewise a finite background gives three copses, or one net.

The three forests connected with a background may differ in periods z, m, and in generating
polynomial /*(¢). A major object of this paper is to characterize and enumerate cases where the
three forests are identical, and the tessellation has the rotational symmetry of a triangle.

2.3. Combination and decomposition of backgrounds; addition and alternation

The rule (2.14) is such that if we combine two backgrounds, node to node, adding the tags
modulo 2, the result is a background for which (2.14) still holds. That is, we can add forests or


http://rsta.royalsocietypublishing.org/

JA

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ON ROTATIONAL TESSELLATIONS AND COPSES 603

tessellations, and the sum corresponds to the forest or tessellation generated by the sum of the
generating fractions for the constituent forests.

We can likewise split generating fractions into partial fractions, with denominators f7¥(¢) that
are powers of irreducible polynomials; the background will then also be separable into corres-
ponding constituents.

A direct consequence of (2.14) is the relation

Wy, s + Wyyo st Wy gp0 = 0.

Thus, if we pick alternate nodes from alternate rows, to give a background of equilateral triangles
with edge two units, the corresponding live nodes provide a permissible background. This is the
process of alternation. If the periods m and n are even in the original background, they will be
halved by alternation. The process yields four separate forests; when building a forest by the
reverse process, any two may be chosen arbitrarily, the other two are then determined. If nis odd,
alternation leaves it unchanged and produces four identical forests.

An even period can arise only from a generating polynomial f*(¢) that has a repeated factor,
say [p*(t)]*, where p*(f) is an irreducible polynomial. Then each forest obtained by alternation
may have factor at most [ p*(¢)]#, where # = [(a + 1]. Thus by alternation, repeated if necessary,
we can reduce consideration to denominators without repeated factors.

Thus, by use of partial fractions and alternation we can construct any forest by combining
forests generated by single irreducible polynomials only.

2.4. Periods and cells

The fraction 1/f*(¢) generates a sequence and, if (1 +4¢, f*(¢)) = 1, a background with base-
period n, where n is the period of f*(¢) such that f*(¢) | (1+¢), f*(¢){ (1 +¢), 7 < n. Then any
fraction @ (1) /f*(t), deg & < deg f*, generates a sequence of period n if f*(¢) is irreducible. If
not, we can say only that the sequence has period »’, and that n'|n.

Any purely periodic background generated by f*(¢) will have also a least row-period m. We
can show, then, for any f*(t), not necessarily irreducible, but with ((1+%), f*(¢)) = 1, that if
n = 27y with »|2¢ + 1, then m|2/u, where u|2¢—1 (see Miller 1970, §4.5). Note that m and n are
always exactly divisible by the same power of 2, here 27.

The repetitions of [0, 0] with least » and s are [z, 0] and [p, m] for some p. These, with the point
[p +n,m] give a minimum cell for the lattice of repetitions of [0, 0]. This contains 2C = 2mn unit
triangles of the background. If the three forests of the background have periods (n,, m;), (ng, m,),
(g, mq) clearly C =myn, = myny = myn,. (2.41)

The triangle [0, 0], [p, m], [, 0] may be isosceles on its base [0, 0], [, 0]. If so, we say that misan
S-period §, implying that the point [p, m] is unaltered if we reverse the original sequence, corres-
ponding to generation by the reciprocal polynomal f”(¢) or f"*(¢). If these points of repetition at
s =m differ, we can find an S-period $§ = km, k(3m +p) = fnmodn and [0, 0] [kp mod n, km]
[, 0] is isoscleles. The fact that m, n are exactly divisible by the same power 2/ implies that the
S-period exists, and that 25 is the first period for which nodes match for the same values of x,
i.e. for which we have repetition in rectangles. Each forest may have a distinct S-period.

Finally, the isosceles triangle may be equilateral and we have a T-period (only one for each
background). If not, we may find a period 7" (a multiple of S), such that km = An = T to give a
T-period and an equilateral triangle with base parallel to the ground.
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604 J. C. P. MILLER

It is also possible to have a smaller equilateral lattice that is skew, in some cases, giving a skew
diamond unit cell.

3. COPSES: DEFINITION, SYMMETRY, AND ENUMERATION
3.1. Definition

A copse is defined with a finite background of nodes, forming an equilateral triangle, having
tags given uniquely by the rule of §2.14 from an arbitrary set of tags on the finite base line. The
size of the copse is the number of nodes in the base line.

A copse proper is obtained by joining each live node to the unique live node at unit distance from
itin the preceding (lower) line. A netis obtained by joining also live nodes adjacent in the direction
parallel to the base.

If the background is part of an infinite purely periodic background, the copse forms part of the
corresponding forest, and the net part of the corresponding tessellation.

We need first to obtain properties of copses. These are relatively simple to determine, and we
may construct tessellations from appropriate copses contained in them.

For the consideration of copses and tessellations in general, and of their symmetries, we may use
a background tessellation of adjacent regular hexagons, one centred at each node, and coloured
yellow if the node is vacant, and blue it ifis live. Thisis used in plates 1 and 2, and it will be noted
that the distinction between copse and net, or between forest and tessellation has been lost.

3.2. Symmetry types of copses

Consider a copse of size n, with vectors @ = (ag, 4y, ..., a,_;)T, b, c representing the tags listed
counter-clockwise round its outside, @ being the base vector. We will use lower case letters for
unsymmetric vectors, capital letters for symmetric vectors, and a, @’ for vectors each of which is
the reverse of the other.

A given finite background can stand on a base in six distinct ways, giving 6, 3, 2 or 1 distinct
copses for the four possible symmetry arrangements shown in diagram 1.

U R S T
A A A AA \
a A a A

DiacraM 1. Symmetry arrangements of copses.

These are respectively unsymmetric U-copses, reflexive R-copses, rotational or skew-symmetric
S-copses, and triangular or T-copses. Each, of course, gives just one net.

We now count possible base-vectors, including (0); these are 2" in all; U-, R-, S-, T-copses
represent 6, 3, 2 and 1 vectors respectively.
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ON ROTATIONAL TESSELLATIONS AND COPSES 605

3.3. Enumeration of copses and nets
See plate 1 for illustrations.
Let u(n), r(n), s(n), t(n) represent the number of copses of corresponding type, and p(n) the
number of distinct nets. Then clearly

6u(n) + 3r(n) +2s(n) +¢(n) = 2% (3.31)

Now consider reflexive sequences. The number of these depends on the parity of #, and there is
one distinct such sequence in each R-background and in each T-background. We thus obtain,

ithn = = 1
withn =2morn = 2m+ r(2m)+t(2m)=2m }

3.32
r(2m+1) +t(2m+1) = 2m+1, (8.52)

a0 a
alla
alO01a
al001
d01110a
laadaadal

Q

Driacram 2.

Rotational or S-symmetry needs a little more care. If we have an S- or T-background of size #,
we can add a row all round, retaining S-symmetry (we may lose reflexion), to give a background
of size n + 3. We may do this in just two ways, as we may see by studying the diagram for n = 5.
This has a T-background. We can choose a arbitrarily as 0 or 1; the other tags are then deter-
mined, with @ = @+ 1. We thus obtain two possible S-copses or T-copses (S-copses in diagram 2).
Initially we have (2, 1, 2) possibilities for n = (1, 2, 3), namely

0 0
0 00 11
0 1 00 000 010

Finally, noting that each S-background gives, by reflexion, two copses, we have, withn = 3m +0,

1 :
»or 2 25(3m) +¢(3m) = 2m

25(3m+1) +t(3m+1) = 2m+! (3.33)
25(3m+2) +t(3m+2) = 2m

Triangular or T-symmetry can be retained when adding a row all round in two ways when 7 is
even (the middle element in the new base provides the choice). When 7 is odd, however, the
symmetry can be retained only if the middle element in the bottom row is zero — that is, in just
half the cases; the new row can then be added in two ways. Thus when 7 is odd, we get as many
new copses of sizes n + 3 as we had of size n. We deduce, starting with the possibilities forn = 1,2, 3,
that

t(6m) = 2m t(6m+ 3) = 2m+l
t(6m+1) = 2m+1  {(6m+4) = 2m+1 (3.34)
t(6m+2) = 2m t(6m+5) = 2m+1,

We may now evaluate 7 (), s(n), u(n) in succession.
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The total number of nets p(n) is

p(n)

Il

u(n) +7(n) +s(n) +t(n)
1[{6u(n) + 3r(n) + 2s(n) +t(n)} + 3{r(n) +t(n)} + 2{2s(n) +¢(n)}]

whence (see van Wijngaarden 1966)

p(6m) = (20 +3.2%m 4+ 2.2%m)
A p(6m 4 1) = 3(26m+1 4 3.93m+1 4 9 gom+1)
= p(Gm +2) — %(267)@4—2 + 3.93m+1 +2.22m)
—d 3.35
< >-‘ p(ﬁm + 3) = %(26m+3 + 3.93m+2 + 2‘22m+1) ( )
S —~ p(6m+ 4) = }(26m+4 4 3.23m+2 4 9 92m+2)
= H(6m+5) = 3(26m+5 4 3.25m+3 | 9 gam1),
MO See also table 1.
= w TABLE 1. NUMBERS OF COPSES
32 n t(n) s(n) 7(n) u(n) p(n)
£0 0 1 0 0 0 1
= - 1 2 0 0 0 2
w
8 <5 2 1 0 1 0 2
g 3 2 0 2 0 4
=2 4 2 1 2 1 6
T 5 2 0 6 2 10
= 6 2 1 6 7 16
7 4 2 12 14 32
8 2 1 14 35 52
9 4 2 28 70 104
10 4 6 28 154 192
11 4 2 60 310 376
12 4 6 60 650 720
13 8 12 120 1300 1440
14 4 6 124 2666 2800
15 8 12 248 5332 5600
16 8 28 248 101788 11072
17 8 12 504 21588 22112
y 18 8 28 504 43428 43968
< 19 16 56 1008 86856 87936
~ 20 8 28 1016 174244 175296
- 21 16 56 2032 348488 350 592
< 22 16 120 2032 697 992 700 160
> E 23 16 56 4080 1396040 1400192
O 23| 24 16 120 4080 2794120 2798336
= 25 32 240 8160 5588 240 5596672
SSH®) 26 16 120 8176 11180680 11188992
anf@) 27 32 240 16352 22361 360 22377984
~ 28 32 496 16352 44730896 44747776
o 29 32 240 32736 89462032 89495040
5z 30 32 496 32736 178940432 178973696
T o 31 64 992 65472 357880864 357947392
s 32 32 496 65504 715794 960 715860992
o35 33 64 992 131008 1431589920 1431721984
84 34 64 2016 131008 2863 245 344 2863378432
= g 35 64 992 262 080 5726491 680 5726754816
e 36 64 2016 262 080 11453114 400 11 453 378560
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ON ROTATIONAL TESSELLATIONS AND COPSES 607

3.4. Groups of copses and bases for ground-vectors

Copses may be added, and so those of size n form an additive group of order 2%. Likewise
reflexive copses, consisting of R- and T-copses, form a sub-group of order 22®+1) in which []
indicates the integer part of x in the usual way.

There is similarly a group of rotational copses, consisting of S- and T-copses, of order 2m, 2m+1,
2™ when n = 3m, 3m+ 1, 3m + 2.

Finally there is a group of copses w1th complete triangular symmetry, the order is 2™ when
n=6m+i,i=1,34,35,86,8.

A basis for the complete group of ground vectors is given by the unit vectors (1, 0, 0, ..., 0)
(0,1,0,0,...,0), ..., (0,0,0, ..., 0, 1). Likewise a basis for the ground vectors of the reflexive
copses is given by the symmetric vectors with 1 or 2 units; e.g. for n = 5 these are (1, 0,0, 0, 1),
(0,1,0,1,0), (0,0,1,0,0).

Sets of basic vectors for the S- and T-copses will be developed fully in §4.

The sets of nets consisting of distinct patterns, do not, of course, all form groups.

4. COPSES: MATRIX THEORY
4.1. The Pascal matrices. Rotational vectors

We have seen in Miller 1970 (§3.4) that the vectors a, b, ¢ of §3.2 above satisfy the matrix
relations

c=Aa, b= Ac, a= Ab, (4.11)
in which A is the n x n matrix.
| PP PPPP 1
1 0 0 0 1
A=Aa,=f 1 1 11
1 0 1
1 1 0
1

This we call a ‘Pascal’ matrix of binomial coefficients, here reduced modulo 2. Thus the jth
element in the ith row is the parity of the coefficient of #~1in (1 4 ¢)»—¢,

We deduce that
A3 =1, (4.12)
whatever the size of A.

Consider now A,,. This has at most # independent eigenvectors, row or column. But we already
have 2" column eigenvectors for A3, namely, all the n-vectors with coefficients in GF(2), derivable
from a basis of n distinct vectors. Hence all z eigenvalues of A3 are unity, and those of A are all
cube roots of unity.

Now, rotational copses, i.e. S- and T-copses, arise from what we shall call rotational (column)
vectors, which correspond to unit eigen-values of A, since @ = Aa; we know there are 2m, 2m+1 om
of these for n = 3m, 3m+ 1, 3m + 2, and so bases respectively of m, m + 1 or m rotational vectors.
The remaining 2m, 2m or 2m + 2 vectors of the full basis are equally divided between the eigen-
values w and w?, and combine symmetrically to give triplets of vectors with all elements in GF(2).

49 Vol. 293. A


http://rsta.royalsocietypublishing.org/

AL B

/

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

608 J. C. P. MILLER

4.2. Rotational polynomials
If a (k+ 1)-vector of a forest is generated by

JE@) =gty ttoy o2+ ... togth 2oy th 14 oy t*
of degree £, and we write f; = (o, &y, ..., 23) T, the vector of coefficients in the reverse order,T then
fa =o. (4.21)
We know also that, for vectors a, b, ¢, reading counter-clockwise round a copse,
c=Aa, b= A%. (4.22)

If, then, we have several (£ + 1)-copses from the same background generated by f§(¢), with
enough independent vectors @ so that they determine f, uniquely, and if we form a matrix §;
with the @ as its columns, we know that

0 =fI'S, = fTA. A%S, = ffA%. AS,. (4.23)

Then S, = A2S] is a set of vectors b from a forest generated by f¥(¢), and S5 = AS, is a set of
vectors ¢ from a forest generated by f5(¢), so that

JrA=ff, fiA*=Jf. (4.24)
We may then readily verify (Miller 1950, §3.5) that
L) =fE@+1), fot) =fE0+1), AW =f30E+1). (4.25)

This indicates that f;(¢), f5(¢), f3(t) have similar factorization characteristics. All are irreducible
if any one is; all factorize into the same number of factors with the same set of degrees, and these
factors may be arranged into corresponding triplets of identical or related polynomials of the
same degree. This statement applies to polynomials with «, = a; = 1. It can be extended to
allow either or both to be zero, i.e. to general (£ + 1)-vectors in GF(2), provided that we consider
the polynomials ¢, £+ 1, 1 or 10, 11, 01 as a triplet of polynomials of ‘degree’ 1; they form a triplet
for A,. In this case it is the length of the vector, rather than the actual degree of the polynomial,
thatisrelevant; the total ‘degree’ is always & for (£ + 1)-vectors, but a power of 01 may be involved
indicating the number of initial zeros, or of 10 giving the number of final zeros.

We can now examine the structure of the row eigensystem of A. The eigenvalues of A3 are all
unity, and a complete group of 2 eigenvalues exists. The eigenvalues of A are 1 and the two
cube-roots of unity. Corresponding to eigenvalues 1 of A we have rotational (row)-eigenvectors,
which we shall call rotational polynomials, since all the polynomial vectors f; such that f¥(¢) gen-
erates rotational tessellations turn up here, and comprise the set of all such vectors having
oy =0y = 1.

Corresponding to the eigenvalues w, w? we have eigenvectors whose elements are not in GF(2),
~ but which can be combined to give (ordered) triplets of vectors that have elements in GF(2),
namely triplets (fy, fa, f3) or (f1, f2, f3). These in turn give triplets of generating polynomials

T The reversal is needed for convenient matrix multiplication. Most of §§4 and 5 is concerned with eigen-
vectors of the Pascal matrix A, in which vectors like f; and @ play a major part. We shall therefore write vectors
of detached coeflicients in the order in which they occur in these vectors in these sections, and shall abandon a
fixed order for writing terms in polynomials f(¢), /*(¢) so that we can avoid reversals when comparing with f. This
suggests use of f*(¢) with high powers written first.
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(f¥@), f2@), fx@) or (f1*(t), f3*(@), f3*(t)) applying to a single background, or rotational
triplets of polynomials. The triplets are cyclic, i.e. the triplet (f,, f5, f;) may be combined (by multi-
plication) in use with the triplet (f,, f,, f5) so far as forests are concerned to give the triplet

(TS, f2@0)S3(0), SO ST@)s
and even for tessellations, the backgrounds corresponding to different orientations may be
added.
The multiplicative properties mentioned indicate that rotational polynomials form a multi-
plicative ring, in fact, an integral domain, also that when f§(¢), f5(¢), fa(¢) differ they are not
individually rotational, nevertheless their product f§ () f& (f) f3(¢) is rotational.

4.3. Row eigen-vectors of A. A basis for rotational polynomials

We are nowin a position to obtain a basis forrotational row-vectors and polynomials connected
with A, for any degree £ +1 = n.

Firstly, we note that for n = 3A +1, 34 + 3, 3A + 5 there are 2* rotational polynomials having
oy = o, = 1and,inall, 22+ — 1 vectors, including those with zeros at both ends. Now b = 24+ ¢4 1
is a rotational polynomial (we shall see later it is the only irreducible such polynomial that is
reflexive, and the only irreducible and rotational one whose degree is not a multiple of 3). Hence
the vectors for n = 34+ 3 and for n = 3A + 5 are exactly those for n = 32 + 1 multiplied by 4 and
b? respectively. We need therefore consider only n = 3A + 1 any further.

Next we note that the only irreducible polynomial with constant term zero is ¢. This is a
member of the triplet of ‘first’ degree polynomials (¢, ¢+ 1, 1) associated with A,. Any triplet for
which we do not have «, = o, = 1 for every member must have this triplet as a ‘factor’. This
triplet yields the unique rotational polynomial 0 1 1 0 or 0.+ +¢+ 0 = a, associated with
A, (not Ag), that has not got &, = &;, = 1. Any rotational vector with zeros at its ends, always the
same number, 7, say, at both ends, will have a? as a factor.

The full set of rotational polynomials of #z = 31+ 1 then has 2* rotational polynomials with
oy = o, = 1, also 22~1 with a zero at each end, 22~% with 2 zeros at each end, and so on, those
polynomials with zeros being the polynomials for n = 384 — 2 each multiplied by a. Thus as a
basis for the vectors we see that we need one vector with each possible number of zeros at the
two ends, commencing with a power of a. It is easily verified that the following set will suffice for
n = 3A+1: a*, ca*=1, p3a*~2, b3%a?~3, ... (in these ¢ = f*(t) = #+¢+1, ¢ = 1011) finishing with a
polynomial without a factor a. There are just A + 1 polynomials in the set, giving 2**+1 — 1 vectors
in all. Other sets are possible, according to need. For example, when using polynomials of the full
degree, we merely have to assure the presence of the last member of the basis in every combina-
tion. In §4.8 we shall use a set chosen in order to pick out irreducible polynomials; this set needs
as great a spread of small factors as possible, and the set used is

at, a1, a2’ ar 3%, ar2b3ec’, arBb3c%, ar—8b3c2c'2, ar~"b3cc'p, etc.

4.4. A basts for rotational (column-)vectors

The rotational column-vectors do not have the full multiplicative structure of the row vectors.
On the other hand, a connection between sizes of copses # and n — 3 obtained by stripping off a
row all round is a satisfactory substitute. We can obtain a partial multiplicative structure by
demonstrating that any rotational polynomial-vector may be used to give a copse.

49-2
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Consider the tree generated by an isolated root. This expands indefinitely to give an unbroken
row of 27 units in row 27/ — 1 and two well separated copics of the single root at row 2. If we start
with a lone polynomial vector, f, on the ground we shall likewise, in row 2/, have two separate
copies of f provided 27 > deg f;.T We consider one of the two ‘anti-copses’ that end with these
copies of f, together with one zero at the end nearer the other copy. In this the top line on the right
gives the polynomial ¢f;(¢)), and the outer edge consists of units throughout. The inner edge has a
polynomial ¢g*(¢), say, running downward and outward from the top left corner of the ‘anti-
copses’ (see diagram 3). ' l

00
10011 0/0\0100O0T1'1

101 1/0 1 0\l 1 11
1 10o/1 1 00\l 011

1 0/0 1 0 0 O\l 1
1 1000 0\l
0o1ro111110

0011010100
00010011000

DrAacram 3.
Write

th(t) = agt+a, 2 +ast®+... } (4.41)

WgR(E) = yol+ P +ya Pt
Then t f,(t) is generated entirely by sub-trees from the polynomial #g*(f), omitting the initial

left hand branch of the sub-tree from each node vy; (this merely yields a contribution to y,_;,
already known and allowed for). Thus

Ui(8) = tyy+ by (04 1) +ty,(¢+1)2+ }

= tg*(t+1) (4-42)

so that g*(¢) = f5(¢) (see Miller 1970, §3.5).

Similarly we have f,(¢) up the inner edge of the ‘anti-copse’ on the left. Thus the normal copse
obtained by filling in the zeros outside the initial tree is a copse with f;, f;, f, in the centres of the
vectors. If deg f; = &, then the size of the copse is 2.2/ — k — 1 for some 27 > £.

Copses of this type suffice to give a basis for rotational vectors in all cases, using only 2/ and 2/+1
where 2/ > k > 27-1, Each copse gives a basis for size

2.9 —k—1—3r, r=0,1,2,...

by stripping round the edges r times, where f () is now a rotational polynomial. The correspond-

ing vectors are given by
f(t) x 12/—k—1-2r (t+ 1)rtzj—k—1—2r

so long as zeros only are stripped from the ends, i.e. so long as

4r < 2(2—k—1).

T Adjacent copies if deg f; = 27— 1; separated by one or more zeros if deg f; < 27— 1. The rest of the argument
needs slight modification in thc former case, since there is no intervening zero between copies, but it still holds.
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TABLE 2. TABLE OF BASES FOR ROTATIONAL VECTORS

18 19 20
bS¢ b% b
b5 Bk b4
b% B be
® ¢ b

1

b2

bc b?

c b

b=1t24t4+1, ¢c=1t34t+1.
| osdi<2¥-k-1)

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

39

b%
b?

B b bt b% b be B2 ¢ b . 1 b b5 1% pM Pl H13 Bl p12
b% b bc b* ¢ b 1 b1 b1 p1% b3 pli¢ b2 p1o¢ pl1
¥ ¢ b 1 b1%¢ b1 bl p12 b0 b1 bO% b0 b

1 bl p12 o b1 bO% b0 b B b BB

b1 11 b% b B¢ b b'c b® bSc b7 b

Cb% b1 b8 b° b BB BSc BT b b® b P

b b° b% b® B8 BT bSc b B¢ B5 B3 bt b%

b%¢ b8 b b7 b b bt B5  b% bt b B® be b?
b% b7 b5 b5 bl b5 B% bt b% B* b B2 ¢ b

b5 b® bl b5 b%¢ br b% b® bc B2 ¢ b 1
bl b5 b3% b* b% B be b2 ¢ b 1
b3% bt b% b® be B2 ¢ b . 1
b be b2 ¢ b 1
c b 1
1
b4
b3 b4
b2 b®  be
be b ¢ b
c b 1
1
e 40
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1
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b%c b8 b8 b7 b5
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b 1
b0
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b b b
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b8 b b5 b3 b4
b% bt b% b be
b be b2 ¢ b
c b 1
1
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b% b7 b B b P
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12-20-1(z 4 1)i ¢2'-2-1 of length n = 2.2/ —3i— 1

12’_2R—2i_]bA(t+(1){tz’_2).—2i—l of lengtl—l n=2.2-21—-38i—1\ g: Z‘+t+ 12,j 2: 34141,
129-2A-2i-4p (1 4 1) $2'2A-24 of length n = 2.2'— 21 —3i—4) O 4 <2AF—E-1)
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After that, with 1’s lost from the ends when stripping, the vectors are still rotational, but are not
related to rotational polynomials £ *(¢) in the manner described.

The rotational polynomials & = t2+¢+ 1 and ¢ = ¢3+¢+ 1 suffice to give a complete basis for
rotational vectors as indicated in table 2 (and easily proved by using and extending the table and
counting). The basic vectors are

126-2i-1(4 4 1)6 4221 of length 7 = 2.2/ —3{—1
12-2A-2i-1pA (g 4 1)1 420-2A-2i-1  of length n = 2.29 — 221 —3i—1
197-22-2i-4pAs(¢ 4 1)§ F-22-2~4  of length 7 = 2.2/ —21—3i—4

fori=0,1,2,...s0long as 41 < 2(2/—k—1), k= 0,21 or 2A +3.
For example the basis for n = 12 is:

for2i =8  1%¢*  or 000010110000}
15(t+1) or 000001100000

for 29 = 16 (¢4 1)%2% or 100111100111}
1(¢+1)%2% or 011110011110}

Other vectors, keeping each within its group for fixed j are:

for 27 = 1%'t*=000011010000
for20 =16 (t+1)%%' =111001111001.

These are both derived from rotational polynomials.
The other rotational row vectors, with contribution from both j-groups, are

0 01x11x11112x 10

0 01 x10011x111101x 10
0 01x11001 x101111x 10
1 11 x 10111110111

1 11x 11101111101

1

1

1

1

b4
pl
1101 x 111112
1011 x 111112

e e e = = =)
N N s = e
OO R OO R O R
O R R OO OO R R
~R O R OO R OO KR
S R O RO R R
O R O RO R

1
1
1
0
1
0
1
0
1

O = O O e e e e
S = O = = O O O =
L e =

Although two of these have a rotational polynomial factor, not one is free of “general’ factors;
even so, the resulting copse is, in every case, rotational.

It is worth noting that, if n = 2/, the row and column eigenvector systems are identical, also
that for n = 2/ 44,7 = — 2, 0, 1, all column vectors belong to one system only. This is not so for
n = 29— 1, since the 1 at the top of a column in table 2 belongs to the group on its left.

The sub-groups of vectors for a given value of 2/ are multiples of a group of rotational row-
vectors, for the method of this §4.4 works identically for every member of such a group, whether
oy = a;, = 1,0orgyand/or o, = 0; we have to count end-zeros a little differently in the latter case,
distinguishing those that ‘belong’ to the polynomial from those that do not. For n = 27 44, the
row-polynomials are multiplied by 1%, for n = 27 —¢, they are multiplied by (¢4 1)¢
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Another simple way to build up a vector basis for rotational n-vectors is simply to use a basis
for (n— 3)-vectors. By adding a row round the copse given by the (n— 3)-vector, as explained in
§3.3, we can obtain a set of independent n-vectors, one from each (n— 3)-vector. The second
n-vector obtainable from each of these copses is found by adding the copse based on the n-vector
(0,1,1,...,1,0); this is independent of the others and is itself obtainable by bordering the zero
copse. This last vector is the extra one needed for the n-basis. This method has the disadvantage
that we have to know the (7 — 3)-basis first.

5. ENUMERATION OF PRIMARY AND IRREDUGIBLE POLYNOMIALS
5.1. The isomorphism between four multiplicative rings of polynomials

We first exhibit an isomorphism between four distinct multiplicative rings of polynomials.
These are:

(a) the ring of all binary polynomials,

(b) the ring of symmetric or reflexive polynomials,

(¢) the ring of rotational polynomials,

(d) the ring of triangular, i.e. reflexive and rotational polynomials.

We note that there are 2% polynomials in the sets for respective degrees k, 2k, 3k and 6k, and we are
proposing to enumerate the primary polynomials in each case for degrees &, 2k, 3k or 6k. These are
the polynomials that appear for the first time at that degree, having no factor within the ring.

Consider each ring in turn; in each case we have the unit polynomial 1 for £ = 0.

(a) We consider all polynomials of exact degree .

For k = 1 we have two primary ones, ¢+ 1 and ¢, or 11 and 10. This determines the structure,
for we know there are 2% polynomials of exact degree £. So for £ = 2, we have 3 products (¢+ 1)2,
(¢+1)t,and 2 and one primary ¢ % +¢ + 1. In this ring the primary polynomials are the irreducibles.

We can extend the ring to include multiples of 0.¢+ 1 (the vector of coeflicients 01), i.e. to
include polynomials of degree < k. This gives 2%+ — 1 in all.

(b) Reflexive polynomials of exact degree 2. These also number 2%, and have a, = o, = 1.

For k = 1, n = 2 we have two primary polynomials, #+¢+1 and (¢+ 1)2 Again the structure
is determinate and identical with that in (a) above. For £ = 2 we have 3 products (£2+¢+ 1)2,
(#+¢+1) (¢4+1)2 and (¢4 1)% and one primary # + £+ 2+ ¢+ 1.

We can also extend the ring to include reflexive polynomials with zeros at both ends by using
multiples of 0.2+ ¢+ 0, just as we used 0.+ 1 in (a), to give 2k+1 — 1 members. We also allow
for degree 2k + 1, with polynomials equi-numerous with those for degree 2&, by multiplying every
polynomial for degree 24 by ¢+ 1.

(¢) The third ring is that of rotational polynomials. Here for » = 3 we again have two primary
polynomials #+¢+1 = cand $#+¢2+1 = ¢’. For n = 6 we have three products ¢2, ¢¢’, and ¢’2 and
one polynomial % = (#2+ ¢+ 1)% appearing for the first time with degree 3, and so primary. The
structure is thus as before. Yet again we can extend the ring to polynomials with zero coefficients
at beginning and end by using the degree 3 rotational multipliera = 0.¢3+2+ {4 0. We can also
allow for polynomials of degrees 3% + 2 or 3% + 4, each equi-numerous with those of degree 3k, by
multiplying each polynomial for degree 3% by b or 5% respectively.

(d) Finally we have triangular polynomials, both rotational and reflexive. Here for degree
k = 6 we again have two primary polynomials, 5*=11 01 01 lande’'=111111 1;
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for k£ = 12 we have products 4%, b%:’, (¢c')? and a primary ¢;, = 10011 x 11001 x 11111 (using
detached coefficients). We include polynomials with zero coefficients at the ends by using the
multiplier ¢* = 0010100. The other ‘degrees’ with polynomials equi-numerous with those for
6k are 6k + 2, 3, 4, 5, and 7; the corresponding multipliers are here b, a, 42, ab, and ab?, but all with
odd degree have end zeros.

Thus all these sets of primary polynomials are counted by Selmer’s function I,(k) (see Selmer
1966, pp. 12, 201).

Now, every polynomial of degree d dividing £ is a factor of the characteristic product t** +t = 0,
and each zero of each polynomial is represented just once. Thus

3 dI,(d) = 2* (5.11)
dlk
whence by Mébius inversion (k) = %z (d) 24, (5.12)
dlk

Table 3 lists these numbers to £ = 30. We also give the number P, (k) of primitive polynomials,
i.e. those for which the period of the sqeuence generated by f(¢) is exactly 2% — 1; we have

By(k) = (2 —1) [k (5.13)
where ¢(s) is Euler’s function.

TABLE 3. NUMBERS OF IRREDUCIBLE, PRIMITIVE, REFLEXIVE AND ROTATIONAL POLYNOMIALS

k I (k) Fy(k) R(2k) $S(3%)
1 2 1 1 1
2 1 1 1 0
3 2 2 1 1
4 3 2 2 1
5 6 6 3 2
6 9 6 5 3
7 18 18 9 6
8 30 16 16 10
9 56 48 28 19
10 99 60 51 33
11 186 176 93 62
12 335 144 170 112
13 630 630 315 210
14 1161 756 585 387
15 2182 1800 1091 728
16 4080 2048 2048 1360
17 7710 7710 3855 2570
18 14532 7776 7280 4845
19 27594 27594 13797 9198
20 52377 24000 26214 17459
21 99858 84672 49929 33288
22 ' 190557 120032 95 325 63519
23 364722 356 960 182361 121574
24 698870 276480 349520 232960
25 1342176 1296 000 671088 447392
26 2580795 1719900 1290555 860265
27 4971008 4202496 2485504 1657009
28 9586395 4741632 4793 490 3195465
29 18512790 18407808 9256 395 6170930
30 35790267 17820000 17895679 11930100
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The number I,(k), then, enumerates the primary polynomials in all four cases. These poly-
nomials are not all irreducible and we need further consideration to sort out those that are.

5.2. The characteristic products for reflexive, rotational and triangular polynomials

We have seen that the irreducible polynomials of degree d dividing & are precisely those which
form the product #* + ¢,

We shall now obtain similar characteristic products for the reflexive and rotational poly-
nomials, and show that there is just one irreducible triangular polynomial, namely #2 + ¢+ 1.

Reflexive or symmetric polynomials, if irreducible, must have an odd number of 1’s. Thus the
degree must be even, 2£, to have a 1 in the middle. If, now, « is a zero of £ *(¢), &~! must also be
zero. If o, a2, o, ..., a?* " are the zeros, with a?** = a, mod f*, whence the middle one must be
a~!and «?® = = mod f*, whence :
fH(a) |o2H1 41, (5.21)

Hence all reflexive polynomials f*(t) of degree 2k are factors of ¢2+1 4 1.

The whole argument is reversible, so that all factors of this, including those that have degrees
dividing £, are symmetric.

For rotational polynomials we consider

SE@) =t"1+t+1 and f*() =M1 with A = 2k,

Both of these divide #A*+A+1 4+ 1, which in turn divides $**~1+ 1, while f*(#), f'*(¢) divide res-
pectively "1+ +1 and 14 ¢+ 1. All three of ¢tAM14¢41, A1 4¢A4+1 and t*41¢ are
coprime in pairs except for a simultaneous factor ¢2+ ¢+ 1 when £ is even.

Consider, for example, f*(¢) = 2“1 414 1.

Then £ = p2F 4 | = p~Imod f*

or (2254 L = Omod f*.

Also R g g2%-1 1 since 2%k 42k 41| 23k

Finally 0 = 1+ = 1 4 2% (1 4 ¢) mod f*

so that SE| 1+ 2 (5.22)

The rest follows by taking reciprocal equations.

Now 21 4¢+1 and #'+1+#" 1 1 are both rotational, since replacing ¢ by ¢+ 1 converts each
to the other, its reciprocal. Hence all their factors, which must be of degree dividing 3k, are
irreducible rotational polynomials — irreducible because any rotational triplet would have factors
of degree dividing & and so dividing #*+¢, which is prime to #+14+¢+1 and £2+1 42541
(except for the factor #24¢+1 when £ is even — a factor which is special and outside the general
scheme).

Note that a// the composite primary rotational polynomials are factors of #* + ¢, and that the
triplets of factors of exact degree £ give all these composites.

Next we can show that any irreducible rotational polynomial of degree 3k must divide one or
other of the two polynomials 2+ 4+ ¢ 41 or #*+1 4 ¢4 1. For if f;(¢) is such a polynomial, with
zeros a, a2, a?, ..., a2 7*, then f¥(¢) has the zero a~! corresponding to a, and f,(¢) = f¥(t+1)
has a zero 1+a-1, so that either a=2+1 = a? or (a=1+1)* = a for some j, j'. Thus either
1+a+02+1 = 0 or 1402 +a2+1 = 0. These divide respectively a?’ +a or a?¥ +« and, since
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both f; and f, are of degree 3k, we must have j = k or 2k and, by the relations proved above,
J' = 2kor k correspondingly. (The leastj or j/ might be factors of £ and 2k, by odd divisors, but it is
still true as stated.) In either case fi(¢), f5(¢) divide our polynomials, one each.

Hence these polynomials are such that every factor is rotational, including all irreducible
polynomials of degree 3%; also every rotational polynomial of degree 3£ is a factor of one of these.

We thus have a perfect means of counting irreducible rotational polynomials which, inci-
dentally, all produce forests or tessellations with a period dividing 2% + 2% + 1 and row-period
m = 1, since ¢+ 1 is always a remainder in the development of 1/f*(¢) as a sequence.

We also see that 2+ ¢+ 1 is the only reflexive rotational polynomial that is irreducible. Any
such polynomial must be a factor of both 2+ + ¢+ 1 and #+1 +¢* + 1, and 2 +¢+1 is the only
possible common factor.

Finally we note that, since reflexive irreducible polynomials divide 21 +1, the non-reflexive
polynomials that form triplets with all of these, and ¢2+¢+1, are factors of the polynomials
21429 1t and 7 4+ ¢+ 1; which form a triplet with £2/+1 4+ 1, These characteristic polynomials
divide the companions of the reflexive polynomials into two sets having a right-handed and
left-handed association. Rotational irreducible polynomials can be similarly subdivided, as a
whole. General irreducible polynomials, however, can only be similarly aggregated into pairs of
sets of three.

5.3. Enumeration of reflexive and rotational polynomials

We have two ways of counting these polynomials, and it is instructive, and an added proof of
completeness, to use both.

We can count factors of the polynomials we have shown to be products of the irreducible poly-
nomials, but we shall first use the known totals I,(k) of primary reflexive and rotational poly-
nomials of degrees 2k or 3%, and the known absence of triangular polynomials of degree 6%, by
eliminating primary composites.

Let R(2k) be the number of primary reflexive polynomials of degree 2k, and let R(2k) of these
be irreducible. The reflexive polynomials of degree 2k+1 are all composite, except for £+1,
which will not be in our count.

Let S(3%) be the number of primary rotational polynomials of degree 3, and letS(3k) of these be
irreducible. For degrees 3% + 1 and 3k + 2 all are composite, except for #2 4 ¢+ 1, which will not be
in our count (though it is in R(2)).

Let 7(6k) be the number of primary reflexive rotational polynomials of degree 6k, and suppose
T'(6k) are irreducible. For other degrees, all are composite, as we shall also show for n = 6k. Again
£2+1t+1 is excluded.

Let U(k) be the number of irreducible polynomials that are members of non-reflexive triplets,
there will also be 2R(k) non-reflexive polynomials forming triplets with reflexive polynomials,
a pair for every such polynomial except {2+ ¢+ 1, once again. This exception in several cases
means that we must take special care in starting recurrences, when £ is small.

We obtain a primary reflexive polynomial of degree 2k from the product of the triplet com-
panions of every reflexive polynomial of degree &, R(k) in all. We also have one for each reciprocal
pair counted in S(k) and in U(k). There is also a contribution from 7'(2k), when 3|%.

We have a primary rotational polynomial of degree 3k for every triplet, including those with a
reflexive polynomial, i.e. R(k) +3U(k) in all.

Finally we obtain a primary reflexive-rotational polynomial of degree 6k for every triplet

50 Vol. 293. A
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616 J. C. P. MILLER

without a reflexive, i.e. $U(k) in all, and also from a triplet containing a reflexive of degree 2£, in
number R(2k), and from a pair of rotationals with degree 3k, in number S(3k).
We thus have the following equations:

I,(k) = R(2k) = R(2k) + R(k) + }S(k) + U (k) + T(2K)

L(k) = S(3k) = S(3k) + T(3k) + R(k) +1U(k) (5.31)
I,(k) = T(6k) = T(6k) + R(2k) +1S(3k) + 3 U (k).
Also I(k) = 3R(k) + T(k) +S(k) + U(k). (5.32)
We now eliminate U(k), S(k), R(k) to obtain (subject to initial conditions) that
27(6k)— T(3k) = 2T(2k) — T(k). (5.33)

The polynomial ¢ +¢+ 1, which makes 7(2) = 1, causes an anomaly. If, however, we ignore the
cases k = 1, 2, the equation is satisfied, by consideration of particular cases for £ < 12, k # 1, 2,
and thereafter, only by having 7°(k) = 0. This confirms the earlier argument.

We then have R(2k) = ¥[R(k) +1,(k)] }

(5.34)
S(3k) = A[S(k) + 21,(K)].

We now consider direct enumeration.

Reflexive polynomials of degree 2k are factors of 1 4 #2*+1. We ignore the factor 1+¢, leaving
2% zeros in all. These are shared by the irreducible reflexive polynomials of degree 2k/d, d odd.
Thus ‘

ko (2%
2-R{=] = 2F 5.35
% 232(7) (5.35)
d odd
whence R(2K) = = 5 (d) 2w, (5.36)
il

This satisfies the recurrence relation for R(2k) above exactly, using R(2n+1) = 0, that is we
ignore (1 +1¢), which gives R(1) = 1.

For rotational polynomials, we may consider 1+ #2* 4-#2+1, first removing the factor 1 +¢+ 2
when £ is even. The number of zeros remaining is then 2% — (— 1)%. The zeros are shared between
polynomials of degree 3k/d, 3 { d giving

13k (3%
2578(7) = - (537
3fd
whence 1S(3k) = §17€ 3 a(d) (2999 — (— 1)k (5.38)
alk
3td

This satisfies the recurrence for S(3%) throughout, using $(3k + 1) = S(3k +2) = 0, thus ignoring
2+t + 1, which would give §(2) = 1.
Table 3 on page 613 gives I,(k), Py(k), R(2k), $S(3k) for £ = 1(1)30.

5.4. The identification of individual polynomials

This can be rather nicely carried out by use of an additive vector basis for reflexive or rotational
polynomials of the appropriate degree. As an example we shall obtain rotational polynomials of
degree 18 in this way. We choose a basis for the 27 — 1 polynomials that has 0, 1, 2, 3, 4, 5, 6 zeros
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at the ends of its seven vectors, and which have as many of the smaller rotational factors as can be
arranged. The choice is exhibited in the table below

rotational polynomials of

degree 18
e A A
residues
r A~ N
basis modbd mod¢ modc¢
1 0000001010101000000 ab 01 011 010
2 000001110011 0100000 a’c 10 0 010
3 0000111100011110000 alec’ 01 0 0
4 0001001110100111000 asc?c’ 10 0 0
5 0010111100011110100 ab3cc’ 0 0 0
6 0111110001011001010 ab3c?c’ 0 0 0
7 1110110101010110111 b3¢c%c'? 0 0 0
147 with
— 1110111111111110111  Cyuld) =peqsds
5 1100000011100000011 p,,[){,
5+6 1011110010111001001 Ci(B)=rissth
6 1001001110100111101 Cu(B) =rgsels
6+4 1000000000000000101 pg
4 1111110001011001111  p(C)
445 1101001101000111011 pgd)
445+6 1010111100011110001 py(B)
3+4+5+6 1010000000000000001 o2
34446 1000111100011110101 p(B)
344 1111001101000111111 p4C)
34445 1101110001011001011 pld)

Using residues modulo b, ¢, and ¢’, we see that vector 7 must occur in the representation of any
polynomial of full degree 18; vector 1 must occur if there is to be no factor ¢, and then 2 cannot
occur if ¢’ is not to be a factor. With 1 + 7, we cannot have 3 without 4 if 4 is not to be a factor. We
may therefore have 1+ 7 and any combination of 5 and 6 (including absence) with neither 3 nor
4, or with 4 alone, or with both 3 and 4. The resulting vectors are listed in the table above.

Itis of interest to note certain unexplained regularities about this construction. All the factors of
1+ ¢4 % contain the vector 4 but not 3; this includes p3, and p,|1 + ¢+ 1%%. Likewise all the recip-
rocal factors have vectors 3 and 4. These vectors are absent from the composite vectors, both
primary and pg % pg.

Similar groupings have been found with £ = 21 and 24. In none of these cases was there any
failure in allocation of the irreducible rotational polynomials, for £ = 18, 21 or 24, to the correct
one of the polynomials 1+ ¢+ 2/+1 and 1+ #7 + 20+ pefore the correspondence was actually tested
by division. A proof of this connection would be useful.

Reflexive and rotational polynomials are listed in tables 4 and 5 .The reflexive polynomials
may be extracted, with effort, from the tables of Marsh (1957), which extend to £ = 19. They
were, however, taken from a table, much easier to use, prepared in Bergen, by S. Mossige (1972)

50-2
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under the direction of E. S. Selmer. This extends to £ = 20. Rotational polynomials have been
identified in the manner described above. The periods of the polynomials are given, and, where
available, the row-periods of corresponding tessellations: always m = 1 for rotational irreducible

polynomials.
TABLE 4. IRREDUGIBLE REFLEXIVE POLYNOMIALS
k n m k n
2 111 3 1 18 111111111 114111 19
g 1000000001000000001 27
b 4 11111 5 3 1011100001000011101 57

%

p &

1111011101011101111 57

> 1001001 9 7 1000101101011010001 171
< S 1001110111110111001 171
> —~ 111010111 17 5 1011001101011001101 171
o . 100111001 17 15 1011011001001101101 171
e = 1101000101010001011 171
O 10 11111111111 11 31 1110011101011100111 171
T O 10010101001 33 31 1000001111111000001 513
= 11000100011 33 31 1000010101010100001 513
1001100011100011001 513
=2 12 1111111111111 13 63 1010000011100000101 513
BF 1010011100101 65 21 1010010111110100101 513
= 1000111110001 65 63 1010011001001100101 513
s 1011101011101 65 63 1010111011101110101 513
Q<0 1101011101011 65 63 1011111011101111101 513
oZ 1100100111110010011 513
=< 14 100111111111001 43 127 1101011111111101011 513
e 101010010010101 43 127 1101100111110011011 513
110100010001011 43 127 1101101001001011011 513
100001010100001 129 127 1110010011100100111 513
100010111010001 129 127 1110101011101010111 513
101001111100101 129 127 1110110001000110111 513
110010111010011 129 127 1111001001001001111 513
111001111100111 129 127 1111100101010011111 513
111111010114111 129 127 1111110001000111111 513
16 10001100100110001 257
10010000100001001 257
10011010101011001 257
10101100100110101 257
10110111111101101 257
10111010101011101 257
P 10111101110111101 257
<[ 11000000100000011 257
o 11010001110001011 257
< 11010110101101011 257
— > 11011011111011011 257
olm 11100000100000111 257
=z = 11101010101010111 257
— 11110001110001111 257
A, 11110110101101111 257
anf@) 11111100100111111 257
=w

6. THE SYMMETRY OF TESSELLATIONS

Before attempting to construct a rotational tessellation by means of the rotational copses it
contains, we must investigate the kinds of symmetry that a tessellation can have. Ifit has none but
the basic period-translations we call it a U-tessellation.

The simplest further symmetry is reflexion in a line perpendicular to the ground-line. The
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periodicity n along this ground-line shows that identical lines of reflexion occur with period
n and, clearly, there is a second set of lines of reflexion, different in detail, half~way between each
pair of neighbours in the first set. These R-tessellations have reflexive symmetry alone.

If two lines of reflexion occur at an angle, it has to be 60° or 120° for a triangular lattice,and we
have triangular symmetry. We can likewise have the rotational symmetry of a triangle, without
the reflexion, and we consider this first.

TABLE 5. IRREDUCIBLE ROTATIONAL POLYNOMIALS

(Factors of 110321, of degree k = 3« for 3k = 3(3) 27, and of their reciprocal polynomials, i.e. of 103211 for
3k < 21. Also k = 2.)

k n k n

2 111 3 24 1011001001011011010001101 3133

1100000100000000101111111 9399

3 1101 7 1000111011101101110110001 21931

1011 7 1111010010000000011010011 21931

1001011000111110000111001 65793

9 1100000001 73 1001111100001000010101001 65793

1000000011 73 1011101101101101000011101 65793

1100100000110110111101111 65793

12 1100101011111 273 1101100111010011011110111 65793

1111101010011 273 1110010101100101111001011 65793

15 1001001100110111 1057 27 1000010110001011001000101111 262657

1111100011100001 1057 1000100100000000100001111111 all

1110110011001001 1057 1001001000101011011111000111
1000011100011111 1057 1001010011111101110010100111
1001111010100000110110010111
18 1111110001011001111 1387 1010011000100110100101100011
1010111100011110001 4161 1010101010101101001100110011
1101001101000111011 4161 1011011101010000011111101011
1111001101000111111 1387 1011101111011011110110111011
1000111100011110101 4161 1011110100001101011011011011
1101110001011001011 4161 1100000100010110010110000101
1100011111000000111011100101
;21 1011011111100001000111 2359 1100110110011101111111010101
1000101010010011000011 16513 1100101101001011010010110101
1001011011011011111011 16513 1101000001100000101100001101
1010101110101001111111 16513 1101011010110110000001101101
1100011101101101110001 16513 1110100011100110111111111001
1110011001010111001101 16513 1110111000110000010010011001
1110001000011111101101 2359 1111100110010000000101110001

1100001100100101010001 16513
1101111101101101101001 16513
1111111001010111010101 16513
1000111011011011100011 16513
1011001110101001100111 16513

Let A be one centre of rotational symmetry: there are clearly others of the same type A, one to
each cell. Suppose B is another centre of symmetry of any type as near as possible to A, i.e. none is
nearer, though others may — and will — be equally near. We shall show that B is not the same kind
of centre as A, i.e. that there is no symmetry of the whole tessellation that moves A to B.

In the diagram the symmetry round A implies three copies of B, as indicated, with BAB’ =
B’AB” = B"AB = 120°. Mark the line AB with a ‘flag’ to distinguish between its ends and sides.
The lines AB’, AB” carry similar flags by symmetry (see diagram 4). Now, if B is equivalent to A
it must also have lines and flags equivalent to AB at A. One of these must go to A or to C: it
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cannot go between A and C or C”, for that would contradict the assumption that B is a nearest
symmetry centre to A. But neither can it go to A, for this would give two flags and 180° symmetry
of rotation to AB; such symmetry is not possible, for forest growth is evidently one-sided, with
unique development upward from a ground line, and multiple development downwards. Nor
can the flag go to G, for this would imply a triangle of flags AB, BC, CA that are equivalent, and
hence the centroid of this triangle would have to be a centre of symmetry nearer to A than B.

B
® C" C .
A
B" B'
CI
K]
DiAGrAM 4.

So A and B, and similarly C, are three centres of symmetry distinguishable from one another.
The whole picture can now be completed with a lattice of symmetry centres forming equilateral
triangles of two orientations or kinds, ABC clockwise round one kind of triangle, counter-clock-
wise round the other. A pair of such triangles forms a cell of the tessellation. The sides of the
triangles may be parallel to the ground lines, perpendicular to them, or skew. Such tessellations
are called S-tessellations if they are without reflexive symmetry. We note also that lines like
B”AC contain centres of symmetry at minimum distance apart, repeating cyclically.

We can also have triangular symmetry or T-tessellations with reflexion as well as rotation. The
lines of reflexion are either (a) along the lines of nearest centres mentioned above, e.g. bisecting
BB’ at right angles, or (4) along lines forming one kind of centres only, say A, also as near as
possible, and bisecting, for example BC at right angles, so that Cis a mirror image of B.

For a rotational tessellation we have n, = n, = ny = n,s0 that the T-period, T, is equal to  also.
The S-period has then only two possible values § = n or § = $nif 3|n; any other value can be seen
to imply a row period < n. The two values of S correspond to the two varieties of T-tessellations
mentioned above; for § = n we have version (), with lines of reflexion along the medians of the
T-triangle (of side 7" = n), meeting all three types of centre of rotation, all consisting of T-copses,
in turn; for § = in we have version (4) with lines of reflexion along the medians as before, but
meeting only one kind of centre of rotation, which will consist of T-copses, the other centres are
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at the centroids of triangles of centres of the first kind, and are centres of rotation only, consisting
only of S-copses, the two kinds of these being mirror images. We call these two varieties T,- and
T,-tessellations, the suffix indicating the number of distinct centres involving T-copses.

The centres of rotation each occur in one of three possible sets of positions in the background;
the three types of centre are B-centres at the centroids of B-triangles, C-centres at the centroids of
C-triangles, and D-centres on a node or dot. It is clear, by considering the long diagonal of a
rhombus of which one half is a T-triangle, and on which all three kinds of centre appear at
equal intervals, that there is a set of centres of each type B, Cor D if 3 { n, butif 3|z, we have three
sets of distinct kinds of centres of the same type, which may be any of B, C, or D for a particular
n (n = 3,6,21 excepted). Ty-tessellations can exist only if 3|n, but Ts-tessellations can exist if
3{ norif 3|n; n = 63 gives the first case where both types occur for the same z.

Finally we note that a glide reflexion is not possible in a tessellation except as a sub-symmetry of
full reflexive symmetry and translation. A glide reflexion implies that, after [ rows, say, the origi-
nal sequence is repeated in reverse, and so, after 2/ rows, it is repeated in the original sense with
matching values of x = r + 4s. However, the fact that m and n are exactly divisible by the same power
27 also implies the existence of an S-period (see §2.4) and also that 2§ is the first repetition with
matching values of k. We deduce that [ is also a normal row-period, and so the repeated sequence
is symmetric, and the glide reflexion is just part of a normal reflexion plus translation. It is of
interest to note that either repeated alternation, and/or the production of successive layers (see
Miller 1970, §§4.6 and 4.7) can result in the reversal of a tessellation, and so of its constituent
sequences, without full reflexion.

7. THE CONSTRUCTION OF ROTATIONAL TESSELLATIONS

We can now set out to construct a rotational tessellation by placing similar rotational copses of
suitable size at all or some of the centres of symmetry of one of the threesetsof onekind. A rotational
tessellation of period n may have any or all of the three types of copses in its make-up; the three
types B, C, D give rotationl copses of sizes 3A +¢, € = 3, 2, 1 respectively, each for all non-negative
integral A, but only one set contains n. We may thus need to use copses of size n + 1 or n— 1 instead
of, or as well as zin building tessellations. We use one of these three sizes at a time, and fit together
identical copses in rows parallel to the ground. We may not use all the symmetry centres of the
chosen kind; we use a set [r, +in, s, +jn] forming a lattice of double equilateral triangles — rhom-
buses with short diagonal parallel to the ground line. If an (n+ 1)-copse contains rC = rn?
elementary triangles, so that the rhombus of our lattice contains r cells, we use one centre in 7.

For copses of size n, each has its base adjacent to that of the next, so that each node of the ground
line belongs to just one copse. The next line of copses above has its bases similarly spread along the
line s = n, so that the vertices of three adjacent copses form a unit B-triangle as in diagram 5. If
one corner is at [ry, s,] the corresponding corners of other copses are at [r,+in, 5,+jn] and the
centre [7,, s.] of the first copse is at [ry+4(n—1), s, +3(n—1)].

If we use copses of size n + 1, we place them so that each shares a corner node with two others.
This is legitimate, since rotational copses have all corners similarly tagged.

For copses of size n— 1, we place the bases along the ground and along lines s = jn, with one
node between each pair that belongs to neither copse. Likewise the top node of a copse, on
line jn—2, is two units from corners on the neighbouring copses above. The three adjacent
vertex nodes form a double-sized B-triangle. This has a unit C-triangle in it consisting of the
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intervening nodes mentioned above; these three must be alike from symmetry, and sum to
0mod 2, that is they must be zeros.

JAVAVAVAN
JAVAVAN

Diacram 5

We have now to choose a copse to which we can apply the treatment outlined above. Not
every one will produce a tessellation. Two criteria must be applied.

(1) The row-period n, with the polynomial o*(¢) chosen, must be capable of providing T-
period n, so that the next row of copses is correctly developed by the rule (2.14).

(2) The polynomial o*(¢), given by the base n-vector (whether from an z-copse, or an
(n+1)-copse with the last digit suppressed, or from an (n— 1) copse with an extra zero) must
contain suitable factors; these are (1 +¢)% where 2/||n, and a factor needed so that f*(¢) is a
rotational polynomial where x5 (1) $* ()

T+~ f5(t)"

If these criteria are satisfied the copses will fit automatically into a purely periodic rotational
tessellation. That the empty spaces are rotationally filled in is easy to verify by working inwards
symmetrically from the corners of the spaces.

For the first criterion a row-period z is not sufficient, the phase of the repetition must also be
right. Consider n = 21. The polynomial 100011 gives n = 21,n = 1 and 7" = 21, and it generates
just one rotational tessellation (figure 46). The reciprocal polynomial gives another (a mirror
image), and their product yields one fully symmetric Tj-tessellation (figure 47). On the other
hand, the polynomial 1010111 has n = 21, m = 3 but the repetition in row 21 is not in the right
place, and no rotational tessellation results.

For the second criterion the basis of §4.4 for any 7 allows us to pick out vectors divisible by
(1 +2)¥ very easily for (n—1)-copses and n-copses, and, except in one case, for (n-+ 1)-copses,
since the vectors are all rotational, and the factors (1 + )¢ exhibited. Forn = 2¢— 27, ¢ > j+ 1, this
is all we need, for all factors of 1 + ¢, except 1 +¢, combine into primary rotational polynomials.
For other values of n, e.g. n = 2% + 2/ + 1, only some of the factors may combine into rotational
polynomials. If the product of all these is £ *(¢), always of even degree, 2k, and if f*(¢) F *(¢)is
1 +¢m, then we know that /" *(¢) produces an (n + 1)-copse, with £ zeros at each end, since f*(¢)
is rotational, and £ *(¢) ¢* is a sum of basic rotational (n+ 1)-vectors. Bases for copses of size n
and n — 1, and further copses of size # may be obtained by multiplying F *(¢) by 4 = 111 and 4?2,
and all three by ¢, b3, b3, etc. in the usual way, since /¥ *(t ) is a sum of basic vectors derived from
rotational polynomials, and so are all the new vectors.

This process gives exactly the right number of vectors. It terminates with an (zn+ 1)-vector
having units at both ends, and this requires special treatment, for the final unit belongs to the
subsequent z-period, and so is omitted from o*(#), and it is o*(¢) which must satisfy the second
criterion. ‘
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Now, examination of table 2 and counting digits shows that the only vector of the basis that has
1’s at the ends is the one at the top of the second group for any #; this is always part of the longest
basic vector so far produced to be used in the basis for copses for building tessellations. In an
n-copse, this vector is completely valid: it is always divisible by at least (1 +¢)% and by F *(¢). If
combined with other vectors, they are also divisible by the desired (1 +¢)%. However, it is easily
seen from this table that, for the corresponding (n+ 1)-vector, the power of (1 +¢) is one unit
short in many cases. For example for n = 24 the polynomial 4% (1 +¢ )8 is usable, but the 25-vector
for 7%¢(1+1)7 is not divisible by (1+¢), as is needed. For n = 42, b8¢(1+¢)22 4 8¢(1 +¢)2
is divisible by F(¢) = (1 +42) /b%?2"?but, for the 43-vector, the polynomial 6% (1 + £)2L + 5% (1 +¢)
lacks a factor (1 +¢). More seriously, the (n + 1)-vector must be deprived of its final digit because
of superposition, so far as its factorization is concerned, but not with regard to its rotational
properties. What we need, and can obtain, is a vector to add to it which, without its final digit, is
rotational, but wit/ the final digits is a multiple of 7 *(¢)/(1+1¢). When combined without the
final digit of the second vector, the sum will be rotational, but with the final digit, it will be
divisible by F *(¢) since both parts are exactly a factor (1 +¢) short. The vector needed is (0 17-10)
or {(1+¢")/(1+¢)}—1. This is rotational for all n, being obtained by attaching a row all
round the zero (n—2)-copse, and (1+¢)"/(1+¢) is clearly a multiple of F'*(¢)/(1+¢); this
vector has a zero at each end, and uses the rejected part of the basis. Thus we have constructed a
usable vector of full length, and this is always sufficient.

Rotational tessellations exist for all » = 2¢—24, { > j+1, generated by rotational factors of
1 +¢». They exist also for n = 227 4274 1, generated by factors of 1 4 #2/ 4 #2/+1 and for some sub-
multiples of these periods, where a factor has a period shorter than the full one. L.c.ms of these
periods also have rotational tessellations. Examples of shortened periods are n = 85 = (28 —1)
given by

111010111 x 110111101 x 101111011,

and 7 = 1387 = }(212+26+1) given by 1111001101000111111 and by its reciprocal, and
n = 3133 = (216 +28 4+ 1).

8. THE ENUMERATION OF ROTATIONAL AND TRIANGULAR TESSELLATIONS
8.1. Clearings

One of the most convenient ways to enumerate and to list distinct tessellations is by means of
clearings. A clearing is a triangular cluster of vacant nodes surrounded by live nodes: the inside
of an alternate-sided hexagon in a tessellation. Its size is measured by the length of the longest
line of consecutive vacant nodes, or gap, it contains.

Clearings were used in Miller (1968) to provide a useful means for identifying and listing
distinct tessellations in the set generated by a polynomial f*(¢). S. Golomb (see Selmer 1966
p. 169) showed that, if deg f*(¢) = £, then, amongst all the cycles gvenerated there are gaps,
successions of zeros sandwiched between two 1’s, of lengths as follows:

size of gap k-1 k-2 k-3 .. k—i ... 3 2 1 0
number of gaps 1 1 2 e 2072 2k-5 k=4 9k-3 k-2

A gap of length 0 is just a pair of 1’s.

51 Vol. 293. A
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From this we can enumerate clearings, since a clearing of size r contains sequences with every
gap from 0 to 7 in its successive rows, thus

size of clearing k-1 k-2 k-3 k—4 k-5 ... k=i ... 1 0

number of clearings 1 0 1 2 4 e 208 2k—t k-3

A clearing of size 0 is a unit B-triangle of live nodes.

These results can be modified to give the numbers of clearings in purely periodic tessellations,
of symmetrically placed clearings in reflexive tessellations, and in rotational tessellations, and of
clearings with full triangular symmetry in T-tessellations.

8.2. Clearings in purely periodic and symmetrical tessellations

We have first to confine attention to vectors usable in purely periodic tessellations. Those in
tessellations generated by f*(¢), which must have (f*(¢), 1 +¢) = 1, are all multiples of ' *(¢),
where f*(¢) F*(t) = 1 +t", with n = per (f*(¢)); thus if (1 +£)27| (1 +#) then (1 +¢)2 | F *(¢)
also. A basis for the n-vectors formed by the coefficients in these multiples, assumed of formal
degree n— 1, is given by the polynomials

F*(8),tF*(2),t2F *(¢), ..., t*\F *(¢)
where £ = deg (f*(¢)).

‘We now count sequences originating with a live node at the edge of a clearing, i.e. just after the
end of a gap of the clearing, and including the final zero gap where the edges meet in a pair of
1’s. These sequences all have the first cycle beginning with a one and so must include the first vector of
the basis, given by F *(¢). This excludes all vectors that start in a gap.

Thus the gap at the end of the first period in any such sequence is the full gap in a vector across
that clearing, and its length depends only on the vector ¢/ *(¢) of the basis with largest ¢ that is
used in its formation. The length of the gap is thus k£ ~:— 1. Thus the number N(r) of usable
vectors with gap of length r at the end, and the corresponding number C(r) of clearings are as
follows:

r k-1 k—2 k-3 k—4 k—1i 1 0
N(r) 1 1 2 4 o272 gk ok-2
C(r) 1 0 1 2 o2 gkt ok3

Now consider reflexive tessellations. We use a basis of reflexive sequences which end at a node
on a line of symmetry. This node must be vacant and so the middle of a gap of odd length. We
still want a basis of multiples of /" *(¢), now self-reciprocal, like f*(¢). The multipliers of 7 *(¢)
are the set of reflexive polynomials of degree < £ = 2« = deg (f*(¢)). We want only those
vectors with a zero as last element, at a centre of symmetry. The vectors we may use as a basisare
coefficients in the polynomials

IR (L), bR 2L+t F*(E), ..., t(14e2)FX(8), (1+12-2) F*(¢)
with 2k —1, 2k —3, oo 3, 1

zeros in the gap.
Again, the size of the gap in a vector depends on that basic vector used in its makeup having the
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smallest gap. We find Ni(r), Cgr(r), numbers of sequences and clearings with gap or size r as
follows:

r 2k—1 2k—-3 2k—-5 ... 2k—2—1 ... 3 1
Ny (r) 1 2 4 2i 9r-2 k-1
Cr(r) 1 1 2 2i-1 k-3 -2

For rotational tessellations, the vector bases already set up will serve to count clearings. In
constructing tessellations, copses were placed in such a way that their vertices were as near a
possible to neighbouring symmetry centres. An (zn + 1)-vector or copse has its end or vertex on a
D-centre; an n-vector or copse at a corner of a B-triangle round a B-centre, and a (n— 1)-vector
or copse has the intervening zero between vectors at the vertex of a C-triangle round a C-centre.
In each case the number of zeros at either end of the vector determines the size of the clearing
concerned.

An (n+ 1)-vector with 7 end-zeros gives a clearing of size 3r — 2

A n-vector with r end-zeros gives a clearing of size 3r

An (n—1)-vector with r end-zeros gives a clearing of size 37 + 2

The vectors we use are, as before, multiples of ' *(¢), with f*(¢) chosen to be rotational, and
we multiply by rotational polynomials, until the full length of an (r + 1)-vector is achieved. For
this exact length only, a modified vector is needed and, as we have seen, available. We use
vectors with one kind of centre at a time, but totals below include all. For each kind of centre, the
number of clearings of each size — again dependent on the smallest number of end zeros in any
vector of the basis used in its construction — is exactly twice the number for size 3 less, until finally
centres which are live nodes, using the modified (z + 1)-vector of full length, are twice as many as
centres in clearings of size 1, which do not use the vector just mentioned, but do use the (z—1)-
vector with just 1 zero at each end, these end-zeros over-lapping in use.

For period 7, then, the numbers of clearings C(r) of size r surrounding centres of rotation, and
generated by a rotational f*(¢) of degree £ = 3x+¢,€ = 0, 1, 2 are:

r k=1 k—2 k—3 k—4 k=5 k—6 .. k—3i—1 k—3i—2 k—3i—3
Cy(r) 1 0 1 2 1 2 .. 2 2i-1 2i

with the table finish depending on the value of €:

r 3 2 1 0 D total

C(3k) 2x—2 2x-1 2x—2 2x-1 2«1 3(2¢—1)
Cy(3c+1) 2x-1 2x—2 2x—1 2% 2% 3(3.2x-1-1)
CS(3K+2) Qr—2 9k—1 9k QK—1 9r+l 3(2K+1__ 1)

A similar analysis for centres of full triangul-r symmetry gives, for deg f*(t) = £,
k—r 1 3 5 7 9 11 13 15 17 ... 6i+1 6:+3 6:+5
Co(r) 1 1 1 2 2 2 4 4 4 .. 2 2i 2i

Here, as elsewhere, a live centre D behaves like a clearing of size — 2.
51-2
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8.3. Enumeration of rotational tessellations

We have now only to use the fact that rotational tessellations each use three rotational centres,
and the T\ -tessellations use just one T-centre, while T'y-tessellations use three T-centres.

TABLE 6.
b all rotational rotational tessellations of minimum period n
= 2 tessellations of p A \
=y n period dividing n T, T, S
:é 3 1 1 — —
— 6 2 1 — —
olm 7 3 - 1 2
= 12 7 3 — 2
14 15 — 2 10
=
: 8 15 31 —_ 4 26
—~ 24 47 12 —_ 28
o 28 2565 — 12 228
<z 30 767 — 21 714
O 0 31 1023 — 31 992
== 48 2047 108 — 1892
o) &t) L 56 65535 — 240 65 040
8 % 60 524 287 — 655 522 860
=Z 62 1048575 —_ 992 1 046 560
TS 63 2097 151 59 1343 2095742
ol 96 3145727 4992 — 3138688
112 4294967 295 —_ 65280 4294 836 480
120 — 436 220
21 7 1 — 2
42 47 5 — 22
84 2047 69 — 1686
73 63 — 7 56
85 255 — 15 240
93 2047 — 31 992
105 381 — 4 (86

As an example, consider n = 42.
Rotational polynomials dividing (1+#)%? are 1112.10112, 11012, Take f*(¢) = 1112.10112,

2 11012 with deg f*(¢) = 16, per f*(t) = 42. The number of rotational clearings is 3(3.24—1) =
S > 141. Of these, 17 are T-clearings. All rotational tessellations of periods 3, 6, 7, 14, 21 are also
O included. We tabulate thus:
=2 E sub-
54 n 3 6 7 14 21  total 42  total
E ) T, t 1 — — 1 38 5  8) using
W
T — — 1 2 — 3 — 3} 8+9 T-copses
S e — 2 10 2 14 22 36) 16+ 108 S-copses

Periods up to 21 use 3+ 3 x 3 = 12 T-copses, leaving 5 unused, and 2 x 3+ 3 x 14 = 48 S-copses,

leaving 76 unused.
The tessellations with reflexion are all T}-tessellations. There are 5 of these, leaving 66 S-copses

for 22 S-tessellations.
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For n = 63 we have one more complication. The polynomial
FE() = 111 x 1011 x 1101 x (1001001 x 1011011 x 1101101)

generates tessellations with n = 63, m = § = 21, and yields T\-tessellations, but (1 +¢%3) /(1 +¢)
also gives rotational tessellations with n = § = 63, i.e. any T-tessellations are T if any of the
other factors 1010111, 1110101, 1000011, 1100001, 1100111, 1110011 is present in the minimum
generating polynomial.

We must therefore count the T,-tessellations first, and then the polynomial (1 +163)/(1+1¢)
may be used as f*(¢) to yield the rest.

The polynomial f§(¢) generates 61 7-clearings.

Two of these arise from T,-tessellations for n = 3, n = 21. Thus there are 59 T-tessellations for
n = 63. The test of the enumeration is straightforward. The results are given in table 6.

The possible values of n for rotational forests are:

(i) »n = 2°—2/,7 > j+ 1. Any rotational factor of 1 + ¢* will provide rotational tessellations; all
factors are included, though some have to occur in complete triplets.

(ii) 7 = 2% 4+ 29 + 1. Any factor of 1+ ¢+ 12+ or 1 + 2 + 2+ will do.

(iii) Occasional submultiples of the above occur with rotational tessellations, e.g. in (i)
n = 85 = (28—1)/3, and any multiple by 29, with f*(¢) a power of 111010111 x 110111101 x
101111011; n = 341 = (219—1)/3, and multiples by 27, is another; these arise from (i). From
(ili) we have n = 1387 = (2!2+26+1)/3, and n = 3133 = (2'6+2841)/21, and either multi-
plied by 24.

(iv) Any l.c.m. of periods mentioned above.

There are no doubt many others under (iii), but they have, at present to be found by trial.

9. TABLES

The tables in this paper are selected from more extensive tables, prepared in the course of these
investigations by hand and by computer, often as research exercises by students. It is proposed to
lodge the extended tables, sometimes incomplete in parts, in the Library of the Department of
Pure Mathematics and Mathematical Statistics in Cambridge University.

Table 1, p. 606, gives numbers of copses of the four symmetry types, and the total numbers of
patterns for sizes n = 1(1)36; this is the complete table as prepared.

Table 2, pullout, gives a table of bases for rotational vectors for sizes n = 1(1)50.

Table 3, p. 613, gives numbers of irreducible and of primitive polynomials, I,(k) and P,(k),
and the numbers of irreducible reflexive and rotational polynomials, R(2k) and S(3k) for
k = 1(1)30.

Table 4, p. 618, gives a list of irreducible reflexive polynomials. A complete list is given for
k = 2(2)18. Values of the period n and row-period m of tessellations generated by these poly-
nomials are also given. Thisis part of an extended table to £ = 30, with values of z (only). This was
obtained by J. J. B. Parker in 1972 as part of a Diploma Dissertation.

Table 5, p. 619, gives a list of irreducible rotational polynomials. It is given for degree £ = 2,
3(3)27, together with the period #n, (the row-period is always m = 1). Again this is part of an
extended list to £ = 45, also obtained by J. J. B. Parker in 1972. For n > 24, only one polynomial
of each reciprocal pair is given; those given in this case are all factors of 11000...0001 (with £ —2
zeros). These factors are given first for n < 21; the others divide 1000...00011.
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Table 6, p. 626, gives numbers of all rotational tessellations of period dividing », together with
numbers of rotational tessellations of types T,, T, and S, for various z to 120, thought to be
complete to n = 112.

We list also several useful unpublished tables that extend and supplement those in Miller
(1970), and that have served as auxiliary tables in the investigations. I propose also to lodge these
tables in the Department of Pure Mathematics and Mathematical Statistics at Cambridge.

Table 4 in Miller (1970) has been extended, by means of material obtained using a computer
program by D. B. Webster, to provide all triplets of polynomials, together with period » and
row-periods m, for degree £ = 12. It is remarkable that, amongst the 53 U-triplets of degree 12
polynomials there are just two comprised entirely of primitive polynomials only, though there are
144 such polynomials in all.

A machine-script factor-table of binary polynomials of degree < 14 has been computed by
M. J. T. Guy. There are also other similar tables for GF(p), p = 3, 5, etc.

Several tables of irreducible polynomials exist. One of the best was prepared by S. Mossige
(1972) under the supervision of Professor E. Selmer, in Bergen, Norway. This gives all irreducible
binary polynomials of degree £ < 20. For each degree £, the polynomials are given in blocks having
the same period 7 dividing 2% —1; in each block they are in ‘lexicographical’ order of binary
coeflicients. Also given is the degree of the zeros of each equation, expressed as a power of a zero of
a selected basic primitive polynomial; the period z of each polynomial is thus easily sorted out, and
the power-labels provide material for a canon similar to that of Jacobi (1839).

This table is substantially easier to use for our purposes than that of Marsh (1957), which gives
straight lists for £ < 19. Peterson (1961) gives condensed tables for £ < 16, together with supple-
mentary information on periods and linear independence or dependence of the zeros of the
polynomials.

10. ILLUSTRATIONS
10.1. General remarks

The visual aspect of the copses and tessellations investigated in this paper is of interest in pro-
moting the understanding and appreciation of the subject. Therefore, some care has been taken in
choosing illustrations. Several points need to be taken into account.

(1) The use of colour plays an important part in exhibiting symmetries, as can be seen in the
colour diagrams in Miller (1970) and ApSimon (1g70). Two colour plates are included in this
paper which give further illustration to this point.

Colour is even more important with ternary tessellations (postponed to a later paper for further
discussion). With such tessellations hexagonal patches of three distinct colours may be arranged
and exhibited with complete symmetry of treatment amongst the three colours. The identifica-
tion of the colours with the integers modulo 3 allows the use of algebra in GF(3) for a study of the
existence and numerical properties of these tessellations, but the special qualities of 0 as compared
with 1 and 2 must eventually be suppressed, and the use of colour achieves this end satisfactorily.

(2) Symmetry types. We must make sure to exhibit tessellations of all significant symmetry
types, bearing in mind that this paper is mainly concerned with rotational symmetry.

The symmetry types of copses, U, R, S and T, are described in §3.2. The three kinds of sym-
metry centre of these copses B, C, and D, are described in § 6. Besides the several combinations of
these types and centres, we may also consider the lattice of centres of symmetry in any S- or T-
tessellation. Lines joining closest centres may include some parallel or perpendicular to the edges
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of basic unit triangles, or be all skew. Call these H-, V-, or W-lattices. Then:

symm. type of centre lattice
A T,-tessellation has 3xT H
A T,-tessellation has 1xT,2xS A%
An S-tessellation has 3xS H
An s-tessellation has 3xS W

The s-tessellations usually have relatively small cell-size.

The kinds of symmetry centre are not identical in all of these types of tessellation. In any one,
if 3 { n, we always have equal numbers of B-, C- and D-centres. If 3|z, centres are always all of the
same kind, which may be any of B, C, or D.

(3) Itisofinterest to exhibit a part of all tessellations with small period 7, and also with small
cell-size 2C = 2mn, up to reasonable limits in z or C.

However, we do not need to reproduce all diagrams that have already been published else-
where (maybe in different form, e.g. as forests); some are in colour (ApSimon 1970) where we
do not use colour here.

It is possible to take copies of forests from diagrams in Miller (1970) and complete these into
tessellations, by inserting horizontal links by hand; we shall consider forests published as equiva-
lent to tessellations for our purposes, with the exception of T ; to Ty 4, see figures 42—-45, which
exhibit Ts-tessellations of each kind having all B, all C, and all D centres.

There is a natural break at n = 15, with no further S or T-tessellations until we reach n = 24,
except for two interesting cases, Ty, and Sy, sce figures 47 and 46. We take n = 21 as our limit for
full coverage of S and T-tessellations.

For T-tessellations we extend coverage to n = 24 with 12 tessellations and also give the five
T-tessellations for n = 42. For n = 28, 30, 31 the T-tessellations are rather numerous (12, 21, 31)
and we show only a few of the interesting set for n = 31.

For S-tessellations, we give all 13 for n = 15, and small-celled s-tessellations S,;, with C = 21,
five Sy ; to Sy 5 with € = 84, and five of the set of seven s-tessellations Sgs 5, with € = 73
(Sz3, 4 and Sy ¢ are given in ApSimon (1970), in his notation as (10, 3, 4, 3) and (9, 6, 1, 4)).

10.2. Published illustrations

Before describing the illustrations given in this paper, we make some comments on diagrams
already published in earlier papers. Most of these are of forests given in Miller (1970), in which a
full list (table 6) is given for n < 15; this list will be used for reference.

In that paper F1is given in figure 9 as a forest. As a tessellation it is the familiar covering of the
plane by regular hexagons, known as the hexagonohedron, and a very familiar one in tiles. As one
of our tessellations it has ‘ too much’ symmetry in that the ‘direction of growth’ seems reversible,
in this case only. F2 appears as a tessellation in the centre of figure 8; it is, of course merely
reflexive, and not rotational. F4 appears in figures 3 and 13, and as a tessellation in figure 4; this
is the first s-tessellation, that is, with minimum z and C. F17 isillustrated in three distinct ways, in
colour, in figure 48; one appears as a tessellation in the style used for copses in the colour plates in
the present paper.

Other examples of tessellations are given in Miller (1968): F5 is given in fig. 5; the first Ty
tessellation. F32, F33, F34 with n = 14 all give the U-tessellation in figure 7. Figure 8 gives the
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unique smallest-celled U-tessellation (apart from a mirror-image) with » = 31, while F26 with
n = 14 yields the attractive T-tessellation in fig. 9, which is also given in colour as fig. 49 of plate
1 in Miller (1970).

Yet other examples appear in ApSimon (1970), as tessellations in large copse form, and attrac-
tively coloured in a way that much enhances appreciation of symmetry. Four of his illustrations
are represented in table 6 of Miller (1970), namely:

Miller (1970) ApSimon (1970)
6x2 F3 (figure 11) (2001)
5x3 F2 (figure 10) (2101)
14 x 2 F22 (figure 24) (3311)
12x4 F17 (figure 26) (6 4 0 3)

Two others are mentioned in the present paper, but are not illustrated here

78 x 1 Susa (10 3 4 3)
Sus6 (9 61 4)

10.3. Illustrations of copses

In this paper we have one sheet, in colour, giving illustrations of copses.

Plate 1 shows copses for n = 1(1) £, in figures 1(1) £, with more closely restricted scope as &
increases.

Figures 1 and 2 show all copses with n = 1, 2. For n = 1 these are the unit cells, corresponding
to vacant (0, yellow) and live (1, blue) nodes. For n = 2 we have four arrangements of unit C-
triangles, with two patterns under rotation and reflexion.

Figures 3 and 4 show all patterns for » = 3 and 4.

Figures 5-9 show all S- and T-patterns for n = 5 to 9.

The first copse in each figure is all yellow, the blank or zero background copse.

10.4. Illustrations of tessellations
Plate 2 shows some tessellations, in the style used for copses with hexagonal patches of two col-
ours. With table 6 of Miller (1970) again for reference:
figure 10 shows T (F1) 3x 1
figure 11 shows S, (F4) 7x 1
figure 12 shows as above, but mirror image
figure 13 shows R (F2) 5x 3
figure 14 shows T (F3) 6 x 2
figure 15 shows T, 5 (F17) 12 x 4
figure 16 shows T, (F5) 7x 7
The remainder of the illustrations use the representation by joining adjacent nodes that is used
in Miller (1970) for forests, with rectangular background areas, in the first few cases, figures 17—

23 showing Ty, S;, Ry, T, T, T1g, 3, and Uy,. All the others use the triangular (copse) background
area asin ApSimon (1970); table 8 (p. 640) gives further information and the generating fractions.
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ON ROTATIONAL TESSELLATIONS AND COPSES 631

The latter are also listed in table 6 of Miller (1970), or for # > 21 here in table 7, in a slightly
condensed form so that ¢(¢)/f(¢) is not always given in its lowest terms, when a common
denominator allows condensation. Some extra tessellations, not illustrated here, are also men-
tioned in table 7. Individual details of the tessellations in figures 17-80 are given in table 8.

TABLE 7.
m C f@ () figure nos.

Ty, 7 147 bee’ 1 47
Sa; 1 21 be 1 46
T 10912 8 192 b @ 48-59

@ =1,0b,b% b3 cc’, bee’, b2ec’, b3c’, (cc’)2, blec”)?, (cc’)3, blec’)®
Saa, 1114 8 192 8 @ -

@ = ¢, be, b2, b3¢c, ¢?, be?, ¢3, be3, ¢’ be%c’, ¢3¢’, be®c’, ¢3¢’2, bec?
Tag, 10112 28 784 (ec")* @ -

@ = ¢4, bet, %4, b3, cACy,, betCly, %20, b3cACY,, 2, bed, b3, b3c®
Sss,11y114  all organized, but not listed here —

Tao, 11y 21 30 909 , bzciz , [ —
@ = b7, b0’ Clo, po Py, bbs ys ¢6"bo Pys b6c"py by

Sg,» not organized or listed

To 10 31 961 (14631 (1+1) 5030 75-80

Ss,» not organized or listed

Taz, 115 14 588 b2c2c’? @ 70-74
Y= 13 b’ “,’ 012’ bClZ

Sa2,115 2 84 b2¢2 ® 60—64
@ =b,c,bc’,1,¢

Sz, 6011 14 588 b2c2c"? @ —
@ = ¢, be, pg, bpy, ¢'pg, b'py

Szs, 1y 7 1 73 bs bowe 65-69

Tes, 10y 15 85 7225 Cou pow 1 —

All the tessellations listed in the table have been drawn, except for Sy, , and Sy, ,.

Notation. Tyy 111y 15 are labels Ty, 4, Toy 95 ++., Taa 1o in order as listed under @. Likewise 58 means 1, b, 42, ..., S.
The numbering of the labels is not quite consistently chosen, but serves for reference.
Individual polynomials used, in detached coeflicient notation, are b = 111,¢ = 1011, ¢’ =1101, p, = 1000000011,
s = 1100000001. These are all irreducible. Also

C, = 1001001001001 = 10011 x 11111 x 11001
Cag, v = 110111101 x 111010111 x 101111011,
Some numerators @(t) need reduction modf(t) before use. Finally

Fyy 4 = 100101 x 111101 x 111011,

52 Vol. 293. A
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Frcures 17-23. Parts of tessellations, with rectangular borders.
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Ficures 54-59. Ty 7012
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TaBLE 8. CONSTRUGTION OF FIGURES 17-80

figureno. m c
17 T, (F1) 1 3 1/6
18 S, (F4) 1 7 1/c
19 R, (F2) 3 15 1/11111
20 Te (F3) 2 12 1/62
21 T, (F5) 7 49 1/ec’
22 Typ,5 (F17) 4 48 11111/54
23 Uy 1 31 1/110111
24 Sy5,1 (F48) 15 225 1011/C,
25 S1s 2 (F49) 15 225 100101/Cy,
26 S15.5 (F50) 15 225 100011/C;,
27 S1s 4 (F51) 15 225 10112/C,,
28 Sys.5 (F52) 15 225 1000011/C,
29 S15,6 (F53) 15 225 10011101/C,
30 S1s.7 (F59) 15 225 1011/6C;,
31 S5,8 (F66) 15 225 10112/5C;,
32 S50 (F67) 15 225 10000011/5Cy,
33 S1s 10 (F68) 15 225 10001001/6C,,
34 S5 11 (F75) 15 225 1001001011/5C,
35 Sy5,12 (F76) 15 225 1001101111/5C;,
36 S15,13 (F77) 15 225 1011100111 /5C,,
37 R,; , (F36) 3 45 1/bx 11111
38 Ry, (F38) 15 225 1/10011 x 11001
39 Ry 4 (F40) 15 225 1/b % 10011 x 11001
40 Rys5,4 (F55) 15 225 1001001 /56C;,
41 Ry;, 5 (F57) 15 225 111010111/56Cy,
42 Tys. ¢ (F54) 15 295 1/6C,
43 Tys 5 (F45) 15 225 1/Cy
44 Ty, 5 (F46) 15 225 b/Ciy
45 Tys,4 (F4T7) 15 225 b2/Cy,
46 So1 1 21 1/be
47 Ty 7 147 1/boc’
48 Tos s 8 192 1/68
49 Toe s 8 192 1/67
50 Toy s 8 192 1/b8
51 Taa s 8 192 /65
52 Tass 8 192 o [b8
53 Tas6 8 192 o’ /b
54 ng, 7 8 192 cc'/b“
55 Tos 8 192 cc’ [ b®
56 Tay,e 8 192 (cc”)2/ b8
57 T24, 10 8 192 (60’)2/b7
58 Tosus 8 192 (cc')3/ b8
59 Tag, 12 8 192 (ec’)3/07
60 Ses,1 2 84 1/bc?
61 S, 2 84 1/b%
62 Sie,s 2 84 ¢ /be?
63 Siz,4 2 84 1/b%*
64 Sy, 5 2 84 o[ b3c?
65 Sise 1 73 1/ps
66 Sis,2 1 73 b/pe
67 S73,3 1 73 b2/p,
68 Szs,5 1 73 b/py
69 Sz, 1 73 b8 /g
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TABLE 8

figure no. m (o
70 Tyes 14 588 1/ (bec’)?
1 Tyos 14 588 1/b(ce’)?
72 Tyz s 14 588 1/b%c’
73 Tya 14 588 Cyo/ (bec’)?
74 Tes 14 588 Cya/blec’)?
75 Ty, 5 31 961 b/F3 % Fip %
76 Ts.4 31 961 b3/Fgy % Fp %
71 Ts1,16 31 961 0% /Fa1 w Fiy &
78 Ty, 20 31 961 b2 [Fgy o Fyy &
79 Ty, 01 31 961 b%3/Fy |
80 Ty 50 31 961 b2 /Fyy & Fyy #

In preparing this paper I am greatly indebted to Professor Ernst S. Selmer for his help with
discussions and encouragement, and for his invitation to spend a sabbatical period at the Univer-
sity of Bergen where most of the writing up was done.

I have also received much help in the investigations from students in the University of Cam-
bridge, in particular from Mr D. B. Webster, taking a Diploma in Statistics, who provided me
with computer programs and obtained practical examples and tables for the study of the structure
of binary sequences over GF(2). Also Mr J.J. B. Parker, taking a Diploma in Computing,
provided programs and tables for the rotational and reflexive polynomials over GF(2) to higher
degree than it is possible to give in this paper.

Finally I wish to thank Professor J. W. S. Cassels and the Department of Pure Mathematics
and Mathematical Statistics for help provided, after my retirement in 1973, in accommodation
and with the use of Xerox copying facilities, most helpful with the processing of diagrams.
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Figures 1 and 2 show all copses with n = 1, 2. For n = 1 these are the unit cells, corresponding
to vacant (0, yellow) and live (1, blue) nodes. For n = 2 we have four arrangements of unit C-
triangles, with two patterns under rotation and reflexion.

Figures 3 and 4 show all patterns for » = 3 and 4.
Figures 5-9 show all S- and T-patterns for n = 5 to 9.
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10 shows T (F1) 3x 1

figure 11 shows S, (F4) 7x 1

figure

v o
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figure 12 shows as above, but mirror image

13 shows R, (F2) 5x 3

figure 14 shows T (F3) 6 x 2

figure

figure 15 shows T, 5 (F17) 12 x 4

figure 16 shows T, (F5) 7x 7



http://rsta.royalsocietypublishing.org/

